Limit definition exercises
Q1. Use the blocks provided to give the definition of \(\displaystyle \lim_{n\to\infty} f(n) = L \).
Q2. Use the blocks provided to give the definition of `the sequence \(\displaystyle f_n \) converges'.
Q3. Use the blocks provided to give the definition of `the sequence \(\displaystyle f_n \) does not converge'.
FORALL
BLANK
>
BLANK
FORALL
BLANK
>
BLANK
EXISTS
BLANK
REAL
<
ADD
EPSILON
L
FORALL
EPSILON
>
0
EXISTS
M
NATURALS
FORALL
n
>
M
<
MINUS
L
EPSILON
EXISTS
BLANK
BLANK
EXISTS
L
REAL
FORALL
EPSILON
>
0
EXISTS
M
NATURALS
FORALL
n
>
M
<
MINUS
L
EPSILON
FORALL
L
REAL
EXISTS
EPSILON
>
0
FORALL
M
NATURALS
EXISTS
n
>
M
≥
MINUS
L
EPSILON